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We demonstrate the novel use of graphics processing units (GPUs) in accelerating dispersive finite element time domain (FETD) 

methods based upon the Möbius (bilinear) z-transform technique. By utilizing the immense computational potential of modern GPUs 

via NVIDIA’s Compute Unified Device Architecture (CUDA) language, we are able to diminish the gap between dispersive FETD 

methods and their non-dispersive counterparts, facilitating the study of a wider range of physical phenomena. Our analyses indicate that 

the amount of performance gain achieved is directly related not only to the number of variables, but also to the amount of dispersive 

material present in the problem, with very large majoritarily dispersive problems seeing the most improvement. 

 
Index Terms—Dispersive media, Finite element time domain method, Graphics processing unit, Parallel processing.  

 

I. INTRODUCTION 

VER THE PAST several years, three principle extensions to 

the finite element time domain (FETD) method have been 

proposed in order to accommodate the effects of dispersive 

media within electromagnetics simulations: recursive 

convolution, auxiliary differential equation, and Möbius z-

transform [1]-[2]. While these methods have all succeeded in 

incorporating dispersive effects, the Möbius z-transform 

technique is, in general, more efficient and more versatile. 

However, owing to their additional complexity, dispersive 

FETD methods have remained naturally slower than their non-

dispersive counterparts. 

 

In this paper we seek to narrow the performance gap between 

dispersive and traditional FETD computations by investigating 

the use of Graphics Processing Units (GPUs) and their 

massively parallel architectures. While many aspects of the 

standard FETD algorithm have already seen GPU 

implementations [3], little work has been done in addressing the 

additional complexity inherited by FETD methods due to the 

presence of dispersion. Our innovation, then, is to isolate and 

accelerate the additional overhead imposed specifically by the 

dispersive elements. As such, the results obtained herein can be 

easily coupled to existing GPU implementations of FETD 

methods, for even greater computational efficiency. 

 

In doing so, we hope to render dispersive computations 

marginally more expensive than their traditional counterparts, 

allowing for a more accurate characterization of physical 

phenomena, without the debilitating overhead. 

II.  THE MÖBIUS (BILINEAR) TRANSFORM METHOD 

The bilinear transform method builds upon the standard 

FETD formulation for the second order vector wave equation, 

discretized via the Newmark-β scheme [4]. The inclusion of 

dispersion necessitates the introduction of convolutions 

between the fields and the material parameters within the FETD 

equations. However, we can transform the material’s dispersive 

model to the z-domain by using a bilinear transform of the form: 

 

𝑗𝜔 = 𝑠 →
2

Δ𝑡

1−𝑧−1

1+𝑧−1 . (1) 

 

In which Δ𝑡 is the discrete time step used in our Newmark-β 

scheme. Inserting the transformed version of the dispersive 

model into the standard FETD equations and making use of the 

convolution and time shifting properties of the z-transform 

allows us to obtain a set of auxiliary variables and update 

equations for the permittivity as follows: 

 

{ℒ𝜀}𝑛 = 𝑐0[ℳ]{𝐸}𝑛 + {𝑊1}𝑛−1   (2) 

 

{𝑊𝛼}𝑛 = 𝑐𝛼{𝐸}𝑛 − 𝑑𝛼{ℒ𝜀}𝑛 + {𝑊𝛼+1}𝑛−1  ;   𝛼 = 1, ⋯ , 𝑝 − 1 

 

 {𝑊𝛼}𝑛 = 𝑐𝛼{𝐸}𝑛 − 𝑑𝛼{ℒ𝜀}𝑛  ;   𝛼 = 𝑝  

 

Where 𝑐𝛼 and 𝑑𝛼 are constants associated with the medium’s 

electrically dispersive model, [ℳ] is the mass matrix, {𝐸} is the 

electric field strength vector, 𝑝 is the order of dispersion and 

lastly, {ℒ𝜀} and {𝑊𝛼} are the auxiliary variables in question. 

Similar equations are likewise defined for the magnetic flux 

density and permeability. See [2] for a full treatment. 

 

 By including a combination of these auxiliary variables on 

the right-hand-side of the FETD update equation, the dispersion 

can be accurately modelled. As such, the overhead inherent to 

modelling the dispersion is tantamount to applying the updates 

(2) to the auxiliary variables in each time step of the solution 

process. It is these operations we now seek to parallelize. 

III. PARALLELIZATION STRATEGY 

Given that the update equations in (2) are composed entirely 

of matrix multiplications, vector scaling and vector addition, 

they are ideally suited to parallelization, since they contain 

many independent calculations. The Compute Unified Device 

Architecture (CUDA) language introduced by NVIDIA 

operates on the Single Instruction Multiple Thread (SIMT) 

O 



principle and is therefore aptly equipped for handling these 

types of operations, as each thread running on the GPU handles 

the computation of one element of the auxiliary vector, via 

identical operations on different data [5]. 

 

However, seeing as how the GPU and the host device do not 

share the same physical memory, it is necessary to transfer data 

between the two, resulting in additional overhead. From (2), it 

is clear that in order to obtain {ℒ𝜀}𝑛+1 and {𝑊𝛼}𝑛+1, we require 

knowledge of {𝐸}𝑛+1 upon each iteration. The mass matrix and 

constants will equally need to be transferred, but only once, 

before iterations begin, since they are invariant quantities. The 

algorithm within a single time step would then have the form as 

seen in Fig. 1, in which {𝐴𝑢𝑥} is the combination of auxiliary 

variables required to augment the FETD equations. 

 

 
Fig.1.  Pseudocode to update the auxiliary variables on the GPU. 

IV. RESULTS 

We now present preliminary results gathered using the above 

approach. The problem under consideration is a parallel plate 

waveguide with dimensions 20 cm by 4 cm, excited in the TEM 

mode, with first order absorbing boundary conditions at each 

end. A 4 cm doubly dispersive 4th order dielectric slab is present, 

such that the total amount of dispersive material varies between 

25% and 90% of the total volume. All computations have been 

performed on a notebook computer running Windows 7 Home 

Premium edition, equipped with an Intel i7 Q740 CPU clocked 

at 1.73 GHz, with 4 GB RAM. The GPU is the main display 

card, an NVIDIA GeForce 310M with 16 CUDA cores. 

 

In order to first put into perspective the significance of the 

dispersive overhead, we present Table 1 in which the percent of 

total execution time spent updating the auxiliary variables is 

reported as a function of the amount of dispersive material 

present and problem size, for 6000 time steps. 

 
TABLE I 

DISPERSIVE OVERHEAD AS A PERCENT OF TOTAL COMPUTATION TIME 

Number of 
Variables 

Proportion of Dispersive Material 

25 % 50 % 75 % 90 % 

23840 13.0 % 22.2 % 28.5 % 31.8 % 

95680 10.5 % 17.7 % 23.2 % 25.6 % 

383360 9.1 % 21.7 % 27.6 % 30.9 % 

 

All code has been compiled using Visual Studio 2013 

Ultimate edition and the NVIDIA NSIGHT plugin. Each code 

was run 10 times and the execution times averaged. Fig. 2 

demonstrates the speedup achieved in updating the auxiliary 

variables during time stepping, including memory transfer 

overheads of {𝐸} and {𝐴𝑢𝑥}, for 3 different sized problems. 

 
Fig. 2.  Performance gain as a function of problem size and dispersiveness. 

 

It is clear that for small problems containing little dispersive 

material, the GPU is not an efficient option due to the memory 

transfer overhead and may actually perform worse. However, 

as the amount of dispersive material increases, the number of 

operations required also increases, while memory overhead 

remains constant, improving efficiency. Lastly, as the number 

of variables grows the GPU has more data to work with, 

resulting in a greater use of the GPU’s resources and better 

performance.  

V.  CONCLUSION 

In conclusion, it has been demonstrated that GPUs have an 

excellent potential to diminish the performance gap which 

exists between dispersive and non-dispersive simulations. 

Given that good results were obtained with a relatively low 

power GPU (modern GPUs can contain many thousand 

CUDA cores), we are confident that very large improvements 

could be achieved on more modern hardware. Lastly, if this 

method were to be incorporated into an existing GPU FETD 

method, the performance would increase yet again, as memory 

transfer overheads could be removed from each iteration. 
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(…)     // Compute {E}n+1 
cudaMemcpy  // Transfer {E}n+1 from host to GPU 
<<< Kernel >>> // Update auxiliary variables 
{ 
        id = thread #; 
        ℒ𝜀

𝑛+1(𝑖𝑑) = 𝑐0ℳ(𝑖𝑑, : ){𝐸}𝑛+1 + 𝑊1
𝑛(𝑖𝑑); 

        (…) 
} 
cudaMemcpy  // Transfer {Aux}n+1 from GPU to host 


